منابع مشابه
Indicator Selection based on Rough Set Theory
A method for indicator selection is proposed in this paper. The method, which adopts the General Methodology and Design Research approach, consists of four steps: Problem Identification, Requirement Gathering, Indicator Extraction, and Evaluation. Rough Set approach also has been applied in the Indicator Extraction phase. This phase consists of 5 steps: Data selection, Data Preprocessing, Discr...
متن کاملAudio Feature Selection Based on Rough Set
Keeping audio features is important for audio index. However, in most cases the features number is huge, thus direct processing is time-consuming. Feature selection, as a preprocessing step of data mining, has turned to be very efficient in reducing dimensionality and removing irrelevant data. In this paper, we propose a feature selection algorithm based on Rough Set theory, which could find ou...
متن کاملRough Set Based Unsupervised Feature Selection Using Relative dependency Measures
Feature Selection (FS) is a process which attempts to select features which are more informative. It is an important step in knowledge discovery from data. Conventional supervised FS methods evaluate various feature subsets using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining...
متن کاملBest Emotional Feature Selection Criteria Based on Rough Set Theory
Non-verbal communication may be used to enhance verbal communication or even provide developers with an alternative for communicating information. Emotion or Gesture recognition is been highlighted in the area of Artificial Intelligence and advanced machine learning. Emotion or gesture is an important feature for an intelligent Human Computer Interaction. This paper basically is a literature su...
متن کاملSentiment Classification using Rough Set based Hybrid Feature Selection
Sentiment analysis means to extract opinion of users from review documents. Sentiment classification using Machine Learning (ML) methods faces the problem of high dimensionality of feature vector. Therefore, a feature selection method is required to eliminate the irrelevant and noisy features from the feature vector for efficient working of ML algorithms. Rough Set Theory based feature selectio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters
سال: 2017
ISSN: 1545-598X,1558-0571
DOI: 10.1109/lgrs.2016.2625303